Что делает Data Analyst?

Содержание

Аналитик данных: кто это такой и почему так востребован на рынке труда

Что делает Data Analyst?

30 Сентября 2020 года, 16:55

Партнерский материал

В ближайшее десятилетие анализ данных станет основой для многих профессий – как в технической, так и в гуманитарной сфере. По подсчетам IBM, спрос на аналитиков данных ежегодно будет увеличиваться в среднем на 12 %. Это касается всех сфер: от маркетинга и управления до медицины и сельского хозяйства.

Вместе с экспертами по Data Analyst из SkillFactory мы разобрались, чем занимаются такие специалисты, и ответили на ключевые вопросы про это востребованное направление.

Кто такие аналитики данных?

Количество данных в нашем мире растет с каждым днем: мы делимся информацией о себе в социальных сетях, смотрим новости и заказываем доставку товаров онлайн, пишем отзывы в интернет-магазинах, пользуемся онлайн-картами и оставляем другие цифровые следы. При этом пользователей, которые готовы рассказать о себе в интернете, становится все больше.

Все эти данные бесценны: они позволяют анализировать и прогнозировать множество ситуаций. Например, можно рассчитать оптимальные пути транспортировки, чтобы сократить время простоя, или предугадать сбои в работе оборудования на производствах. Анализ данных помогает врачам ставить диагнозы, подбирать онлайн-контент исходя из интересов пользователей и многое-многое другое.

Занимаются этим специальные аналитики данных или, как их называют в англоязычной среде, Data Analyst.

Ключевое отличие Data Analyst от традиционных бизнес-аналитиков – прогнозирование событий происходит на основе математического анализа полученных массивов данных.

Опытный Data Analyst уверенно владеет как минимум одним языком программирования, разбирается в основных принципах статистики и с помощью специальных инструментов может сформулировать выводы своей работы в виде понятного набора данных. Его работа состоит из пяти главных задач:

  • сбор информации;
  • подготовка к проведению анализа (сортировка и фильтрация полученных данных);
  • поиск закономерностей и общих паттернов;
  • визуализация данных и составление конкретных заключений;
  • составление гипотез и прогнозов для улучшения стратегии.

Школа данных SkillFactory открыла набор на курс «Профессия Data Analyst». 

На обучении вы последовательно пройдете все этапы: от основ анализа данных до получения востребованной специализации, а также сотни упражнений и практических кейсов по базам данных, SQL, Python и математической статистике. И конечно, вы создадите свои первые практические проекты, которые останутся в вашем портфолио.

Работа с большими данными – это скукотища?

Конечно, в работе с данными (как и в любой другой) бывают рутинные задачи и нудные моменты. Но иногда Data Analyst приходится сталкиваться с задачами, которые раньше никто не решал, – в этом случае нужно искать нетривиальные методы и быть своего рода первооткрывателем. Предположим, у нас есть данные по ученикам из разных школ.

Мы знаем, сколько времени они тратят на дорогу, чем занимаются помимо уроков, сколько человек в их семье и какое образование у их родителей. Основываясь на этих данных, аналитик может предсказать, какую оценку тот или иной ученик получит на экзамене.

Те закономерности, о которых обыватель даже не подумает, видит специалист по Big Data и делает из них правильные выводы.

Если я гуманитарий, то не могу стать аналитиком?

Академический бэкграунд для новичка не так важен. Инженеру-строителю аналитика больших данных будет даваться так же, как и филологу. Хорошо, если вы помните некоторые темы из базового курса по математике. Но если нет, ничего страшного: практика показывает, что разобраться в них могут и технари, и гуманитарии.

При этом наличие другого, не связанного с математикой и программированием образования, иногда может быть на руку. Например, решать медицинские задачи биологам специализация поможет быстрее, чем человеку, который просто хорошо знает Python. Конечно, бэкграунд в математике и знание языка программирования могут упростить обучение.

Но куда важнее способность и желание все время учиться новому и следить за тем, что происходит на переднем крае науки.

Как найти работу начинающему специалисту?

Преимущество IT-сферы в том, что здесь довольно высокие зарплаты даже у начинающих специалистов. Для большинства аналитиков данных карьерный путь можно предсказать заранее: спустя год-два после старта учебы можно устроиться на позицию джуниора с зарплатой 80–120 тысяч рублей, а дальше карьерно расти раз в пару лет. Мидл-специалисты в среднем зарабатывают 120–180 тысяч рублей, синьоры – 200–300 тысяч, а тимлиды – уже 300–500 тысяч рублей.

На курсе «Профессия Data Analyst» в SkillFactory вас не только научат работать с большими данными, но и помогут найти работу. Начиная с первых недель обучения ментор поможет определить карьерные цели и не сойти с намеченного пути, а карьерный центр подскажет, как оформить резюме и попасть на собеседования.

До 30 октября по промокоду SEO действует скидка -50 % на все курсы SkillFactory.

Аналитика – востребованный навык, который будет нужен в большинстве новых высокооплачиваемых профессий. Освоив его раньше других, вы получите явное конкурентное преимущество на рынке труда.

Источник: https://www.SEOnews.ru/analytics/analitik-dannykh-kto-takoy-i-pochemu-tak-vostrebovan-na-rynke-truda/

Чем занимается аналитик данных и как им стать

Что делает Data Analyst?

Неверные решения при разработке нового продукта или функции сервиса могут стоить компании репутации и денег. Чтобы этого не произошло, компании обращаются к аналитику данных. Он собирает, обрабатывает, изучает и интерпретирует данные: проводит А/B-тесты, строит модели и проверяет, как пользователи и клиенты реагируют на нововведения. Это стоит дешевле и снижает риски бизнеса.

Аналитик данных работает с разными инструментами анализа, не ограничиваясь готовыми решениями и системами, знает языки программирования и формулирует гипотезы.

Такие специалисты особенно востребованы в data-driven компаниях — то есть тех, которые ориентируются в решениях на big data и аналитику данных.

Например, специалисты по данным Netflix вычислили популярность сериала «Карточный домик» с помощью аналитики: зрителям оригинального британского «Карточного домика» также нравились фильмы Финчера и (или) картины, где играл Спейси. Netflix объединили Дэвида Финчера (один из режиссеров House of Cards), политические интриги и Спейси в одном проекте. сервис заключил контракт со Спейси и Финчером без съемок пилотной версии. сериала на IMDb и «Кинопоиске» составляет 8,7 и 8,3 соответственно.

Обязанности аналитика данных

Рабочие задачи Data Analyst находятся на стыке математики, программирования и продакт-менеджмента. В результате его работы компания может получать больше прибыли и делать пользователей счастливее. Обязанности аналитика данных могут различаться в зависимости от места работы и уровня квалификации.

Как правило, такой специалист проводит статистические тесты и решает бизнес-проблемы, на которые пока ответа нет. Затем составляет прогнозы, стратегии, планы и рекомендации.

Чем обычно занимается аналитик данных:

  1. Общается с представителями бизнеса и выявляет проблемные места компании.
  2. Собирает информацию.
  3. Составляет гипотезы для улучшения определенных показателей.
  4. Готовит данные к проведению анализа: сортирует, фильтрует и делает выборку.
  5. Находит закономерности.
  6. Визуализирует данные: переводит статистику и Big Data в понятные выводы и наглядные графики.
  7. Предлагает решения, которые используются для развития проекта или бизнеса.

На основе данных, предоставленных Data Analyst, компания может принимать любые бизнес-решения.

Личные качества

Хороший аналитик данных — это не только метрики и отчеты. Вне зависимости от профиля, классный специалист должен обладать гибкими навыками, которые нужны для продуктивной работы:

  • Системное мышление и логика. Важно уметь анализировать, синтезировать, сравнивать и делать выводы из порой неочевидных закономерностей. Аналитик должен понимать, из каких предпосылок он исходит в своих суждениях, и проверять их корректность.
  • Внимание к деталям, методичность и рациональный скептицизм. Все результаты анализа должны быть проверены, перепроверены и обоснованы. Лучше уточнить непонятные детали и усомниться даже в самом авторитетном мнении, чем запустить ненужный продукт.
  • Вежливость, навыки общения и повествования. Аналитики общаются со специалистами из разных направлений: бизнес, ИТ, бухгалтерия и безопасность. Важно сохранять конструктивный и вежливый подход, не поддаваться на провокации и лоббировать интересы своего отдела.
  • Терпение. Пригодится при очередном письме «концепция изменилась, давайте посчитаем заново».
  • Прагматизм и деловой подход. Важно концентрироваться на тех вопросах, которые позволят улучшить показатели работы компании: увеличить доходы, сократить затраты, оптимизировать процессы.
  • Стремление учиться. Хороший аналитик любит узнавать новое и расширять свой кругозор.
Читайте также  Что означает отрицательный чистый денежный поток?

Как стать аналитиком данных и где этому учат

67% специалистов по аналитике пришли в Data Science из других сфер. В основном это разработчики и маркетологи, но есть и неожиданные профессиональные бэкграунды: геммологи, звукорежиссеры и даже ядерные физики.

Чаще всего изучать аналитику начинают с профессиональной литературы, тематических статей, авторитетных блогов и профильных каналов в мессенджерах. В открытом доступе много теоретической информации, где можно собрать базовый пул теории и практики. И все же для первых самостоятельных шагов нужна система. Проще и быстрее погрузиться в практическую аналитику на образовательных курсах.

Роман Крапивин
руководитель проектов, компания ООО «ИНТЭК»:

«В 2020 я задумался о смене профессии, поскольку пандемия коронавируса серьезно ударила по строительному бизнесу, где я работал руководителем проектов последние три года. Долго выбирал онлайн-курсы, хотел прокачать свои скилы в проектном управлении и пошел на курс Project Manager. 

После первого блока обучения стало понятно, что хорошему руководителю проектов просто необходимо разбираться в аналитике, хотя бы на базовом уровне.

Поэтому я начал изучать Power BI, на котором научился визуализировать данные и получил первые знания для дальнейшей работы с аналитическими данными. Но тогда я понял, что для меня мало базовых основ аналитики. Поэтому для себя я открыл профессию Аналитик BI.

И в настоящее время изучаю программу визуализации данных Tableau, программу для работы с базами данных SQL, прошел курс по аналитике больших данных (Big Data). К сожалению, на настоящем месте работы я не могу в полной мере применять аналитические знания и программы, которые я освоил.

Поэтому задумался о смене профессии: хотел бы попробовать себя в финансовом секторе или крупном ритейле, чтобы погрузиться в мир аналитики».

Иван Натаров
консультант отдела развития предпринимательства Министерства экономического развития Приморского края:

«Будучи студентом магистратуры, проводил исследование инновационной экосистемы Приморского края, тогда познакомился с нейросетями и Data Science. Суть исследования заключалась в разработке алгоритма, основанного на нейросетях и теории нечеткого множества и нечеткой логики, который позволял бы давать объективную оценку инновационного развития региона. У нас это получилось, даже научную статью написали. 

Параллельно я изучал Data Science и посетил форум «Открытые инновации» в 2019 году. Послушав экспертов, я понял, что влюбился в эту сферу.

Я люблю узнавать истории из данных, поэтому и выбрал направление аналитики данных.

Я все еще учусь, но почти за год прокачался в этом направлении довольно неплохо. Из инструментов, что я изучил, любимыми стали  Python и Power BI, они смогли автоматизировать многие процессы в работе, активно чекаю их. Python больше использую для написания парсеров XML и HTML, Power BI — для предобработки данных и визуализации».

Что должен знать и уметь аналитик данных

Такой специалист формулирует гипотезы, проводит статистические тесты на существующих данных для решения текущих вопросов, на которые нет ответа.

Минимальный набор скиллов начинающего аналитика:

  1. Работать в Google-таблицах, группировать, фильтровать данные — на ходу, без перекладывания из таблички в табличку.
  2. Уметь писать SQL-запросы.
  3. Изучить минимум один язык программирования: Python или R.
  4. Делать выводы и представлять результаты в виде интерактивных дашбордов (Tableau, Power BI).
  5. Разбираться в бизнес-процессах и понимать ключевые метрики анализа эффективности.

Инструменты, которые используют аналитики

Основные навыки аналитика данных:

  • Сбор и анализ требований заказчиков к отчетности.
  • Получение данных с помощью языка запросов SQL.
  • Применение в работе ключевых математических методов и основ статистики.
  • Очистка и трансформация данных с помощью Python.
  • Прогнозирование событий на основе данных.
  • Анализ результатов кампаний, исследований и тестирования продуктовых гипотез.
  • Способность создавать аналитические решения и представлять их бизнесу

А еще хорошие аналитики данных умеют работать с Big Data, проверять гипотезы с помощью подходов А/Б-тестирования и быть настоящими исследователями. 

Большинство работодателей просят посчитать определенные метрики, например, какие товары чаще всего возвращают покупатели. Иногда нужно рассчитать инвестиционный потенциал и скорректировать бизнес-модель.

Востребованность профессии и перспективы работы

Сейчас аналитика данных используется в более чем 50% компаний по всему миру. Аналитики востребованы в ИТ-компаниях, ритейле, кинопроизводстве, науке, машиностроении и медицине. В октябре 2020 года по запросу «Аналитик данных» на hh.ru было открыто 8 699 вакансий с зарплатой от 65 тысяч рублей до 300 тысяч рублей.

По результатам исследования 2019 года, спрос на специалистов сферы Data Science за два года вырос на 226%. Популярность профессии аналитика данных со временем только растет, поскольку для развития бизнеса необходимо собирать и изучать данные клиентов и конкурентов. 

В профессии аналитика данных пока нет границ и сложно достичь потолка. При этом можно развиваться вертикально, от начинающего специалиста до главы аналитического отдела, или горизонтально, меняя сферы деятельности: продуктовая аналитика, банковская аналитика, маркетинговая аналитика.

По теме: «У дата-сайентистов довольно много рутины». Как выглядит рабочий день такого специалиста и что нужно, чтобы им стать?

Сколько зарабатывают аналитики данных в России

Зарплата будет зависеть от опыта и географии. Так, аналитик-стажер в Воронеже получает 25 тысяч рублей, а Data Analyst в московском офисе международной компании зарабатывает 200 тысяч рублей.

В Москве аналитик данных с опытом работы от двух лет в среднем зарабатывает 134 тысячи рублей. В Санкт-Петербурге такой же специалист может рассчитывать на 101 тысячу рублей в месяц. Стажеры и Junior-специалисты зарабатывают от 60 тысяч рублей.

Сколько зарабатывают аналитики данных в США

Больше половины аналитиков готовы рассмотреть релокацию и работать за рубежом. Средняя годовая зарплата для аналитиков данных в США составляет $62 тысячи.

Больше всего на американском рынке труда востребованы Data Scientists. Это одна из самых высокооплачиваемых специальностей со средней годовой зарплатой в $130 тысяч. По прогнозам McKinsey, в ближайшие годы разрыв между предложением и спросом у специалистов в этой области составит 50%.

Рынок труда и будущее аналитики данных

Только за последние два года через направление Data Science Нетологии прошло более 3000 студентов, большинство из них работают на профильных позициях в российских и зарубежных компаниях. 

Со временем эксперты ожидают повышение спроса на аналитиков Big Data и представителей смежных специальностей. Чтобы оставаться востребованными, необходимо учиться и работать. 

Осознанный подход организаций к анализу данных и понимание важности Data Science увеличивает потребность бизнеса в интерпретируемых аналитических методах.

По данным International Data Corp. (IDC), мировой доход от решений для больших данных и бизнес-аналитики (BDA) достигнет 260 миллиардов долларов в 2022 году при среднегодовом темпе роста (CAGR) 11,9 процента. В 2025 программные роботы будут выполнять большинство задач, таких как очистка и сбор данных, т.е. многие процессы станут более автоматизированными. К 2030 году Data Science уже не будет заниматься поиском и очисткой данных. Эту задачу возьмут на себя программные роботы.

В настоящее время технологии уже развиваются и достигают своих высот. Подумайте о будущем, когда искусственный интеллект будет в зените, машинное обучение — на пике, облако захватит рынок, а интернет вещей начнет проникать в большинство отраслей. Специалисту по данным потребуются лучшие навыки, будь то технические или социальные, чтобы быть востребованным к 2030 году.

По теме: Как проходит собеседование на должность аналитика данных в

Игорь Полянский, Head of Global product analytics в Gett:

«Мир продолжает ускоряться, а вместе с ним — и требования бизнеса к скорости принятия решений. Подход «задай вопрос, направь его аналитику, а он проанализирует» больше не удовлетворяет требования к оперативности получения инсайтов. Поэтому стандартные подходы к анализу все больше упаковываются в коробочные решения.

В 2020 году анализ, на который раньше уходили часы аналитика, менеджер может сделать в несколько кликов.  Аналитики же делают более сложные исследования, и требования к их компетенциям повышаются. Системы аналитики все больше переходят на формат real-time анализа. У многих компаний это давно must have».

Фото на обложке: Shutterstock / LightField Studios

Источник: https://rb.ru/opinion/data-analyst/

Data Analyst vs. Data Scientist — в чём различие?

Что делает Data Analyst?

Здесь мне хотелось бы рассказать о различиях между профессиями, которые часто путают или вообще считают тремя названиями одной и той же деятельности.

Вот они, эти профессии:

  1. Data Analyst (аналитик данных)
  2. Data Mining Specialist (специалист по интеллектуальной обработке данных)
  3. Data Scientist (ученый по данным)

Хочу сразу оговориться, что на самом деле не существует каких-либо официальных определений каждой из этих профессий и, соответственно, непонятно, как их отличать друг от друга.

Поэтому я предлагаю свою версию того, чем же эти профессии отличаются — на основе данных с зарубежных блогов, зарубежных же объявлений о вакансиях и, само собой, своих собственных соображений.

Data Analyst

Итак, Data Analyst (аналитик данных) — это человек, который проводит описательный (дескриптивный) анализ данных, интерпретирует их и представляет отчет заинтересованным лицам.

То есть основными  навыками данного персонажа являются:

  1. отличное знание предметной области, в пределах которой он анализирует данные. Под предметной областью понимается определенная сфера бизнеса (например, нефтегазовая отрасль или, скажем, торговля элитным алкоголем).
  2. знание особенностей ведения бизнеса той компании, где он работает
  3. хорошие презентационные навыки
  4. знание каких-то средств для визуализации данных (например, Tableau) и умение делать симпатичные и понятные неспециалистам графики-диаграммы
  5. базовые знания статистики, умение пользоваться простыми системами для анализа данных (например, Excel)
  6. возможно (но совсем необязательно) знание какого-нибудь языка программирования

Если собрать это все в одну картинку, то получится как-то так:

Читайте также  Что такое BBB?

Data Mining Specialist

Data Mining Specialist (специалист по интеллектуальной обработке данных) — это технически подкованный специалист, который проводит полный цикл работы с данными — начиная с поиска этих самых данных и заканчивая созданием предиктивной модели. В процессе обработки данных он фокусируется на выявлении каких-то неизвестных доселе скрытых закономерностей и вовсю применяет технологии машинного обучения (Machine Learning).

То есть основными  навыками данного персонажа являются:

  1. Неплохая математическая подготовка
  2. Умение находить и правильно готовить данные
  3. Умение программировать на одном или нескольких языках. Языки эти обычно высокоуровневые, вроде Python, Java, Matlab или R
  4. Знание методов и алгоритмов машинного обучения. Сюда могут входить и статистические алгоритмы, и нейросети, и генетические алгоритмы — тысячи их.
  5. Возможно (но необязательно), умение работать с большими данными (Big Data) — имеется в виду Hadoop, его стандартные и нестандартные модули.

Если собрать это все в одну картинку, то получится как-то так:

Data Scientist

Data Scientist (ученый по данным) — это универсальный игрок, который может делать как то, что делает аналитик данных, так и то, что делает специалист по интеллектуальной обработке данных. И плюс к этому он имеет какое-то особенное умение или особо узкую специализацию.

То есть основными  навыками данного персонажа являются:

  1. отличные презентационные навыки, знание предметной области и умение представлять результаты своей работы неспециалистам (это от аналитика данных)
  2. хорошая математическая подготовка, навыки подготовки данных, машинное обучение (это от специалиста по интеллектуальному анализу данных)
  3. умение работать с Big Data (очень желательно, почти обязательно)
  4. какое-то особенное умение или дополнительная специализация (например, познания в области лингвистики — несколько иностранных языков, умение работать с текстом на продвинутом уровне, т.е. Natural Language Processing)

Впрочем, с ученым по данным не все так чисто — он может не иметь и половины указанных выше навыков, но все равно считаться ученым по данным, если, например, другими навыками он владеет в совершенстве. Скажем, он может не очень хорошо знать математику, но быть великолепным знатоком предметной области. Надеюсь, когда-нибудь позже я подробнее рассмотрю классификацию ученых по данным.

Если собрать это все в одну картинку, то получится как-то так:

Надо заметить, что здесь рассмотрены, так сказать, «чистые» представители профессий. В реальной жизни, например, навыков у аналитика данных может быть больше, а у ученого по данным может и не быть какого-нибудь хитрого умения.

Источник: nlpx.net

Узнай подходящую тебе профессию!

Источник: https://intalent.pro/article/data-analyst-vs-data-scientist-v-chyom-razlichie.html

Чем на самом деле занимаются аналитики данных и почему они не останутся без работы

Что делает Data Analyst?

На уроках математики в школе вы постоянно работали с данными: складывали, умножали, делили в уме или в столбик. Возможно, вы также ведёте семейный бюджет в блокноте или в таблице — вносите информацию и используете простые формулы: находите суммы, разности, средние значения. То есть выполняете обработку данных, причём преимущественно вручную. Когда их мало, справляться с такими задачами сравнительно несложно.

Большие данные — это когда информации действительно много: чёткой границы нет, но обычно речь идёт о гигабайтах, если не о терабайтах. Эти массивы могут поступать сразу из множества источников: интернет‑магазинов и социальных сетей, промышленных систем управления качеством, систем видеонаблюдения, устройств интернета вещей.

Данные отличаются по структуре, бывают упорядоченными и нет. Например, история операций по кредитке упорядочена по времени, а характеристики смартфонов на складе можно хранить без строгого порядка.

Плотность данных также может быть разной: одни системы выполняют измерения каждый час, другие — несколько раз в секунду. Соответственно, и объёмы информации отличаются: от нескольких килобайт до сотен гигабайт.

Работать с большими данными вручную сложно: это долго, дорого и неэффективно. Поэтому для анализа таких массивов используют средства автоматической обработки.

Зачем бизнесу анализировать данные

Представьте, что вы управляете продуктовым магазином. Как узнать, чего хочет покупатель? Спросите его — и услышите, какие товары он приобретает чаще, в какое время обычно ходит за покупками.

Но масса деталей останется за кадром. Например, именно аналитики знают, как на покупки влияет заполненность полок, плохая погода, фоновая музыка.

Все эти и другие данные можно собрать и проанализировать. Это поможет супермаркету расставить товар так, чтобы покупатель как можно дольше оставался в торговом зале и обращал внимание на нужные предложения, и пересмотреть график работы кассиров, чтобы уменьшить очереди на кассах. Узнав больше об интересах своих клиентов, магазин сможет оптимизировать закупки и логистику. В результате выручка увеличится, а расходы сократятся.

Найти применение большим данным можно в любой сфере:

  • На заводах система компьютерного зрения следит за рабочими. Система заметит, если кто‑то забыл про каску, и напомнит о правилах безопасности.
  • В банках анализ больших данных диктует условия кредитов и депозитов, выявляет хакерские атаки и подозрительные операции.
  • Городами тоже управляют большие данные. Умные светофоры уменьшают пробки, компьютерное зрение ищет преступников в толпе. С аналитиками советуются, прежде чем построить новую дорогу или центр госуслуг, изменить маршрут автобуса.

На основе данных можно построить модели и проверить гипотезы. Модель — это математическое описание любой ситуации, которое помогает предположить будущее. Например, модель прогнозирования спроса в торговой сети предскажет, как будет меняться востребованность отдельных товаров, поможет скорректировать цены и объёмы закупок. Использование математических описаний обеспечивает поддержку принятия решений на каждом шагу: конкретный результат работы с данными — точный прогноз на будущее.

На курсе «Профессия аналитик данных» от «Яндекс.Практикума» вы научитесь получать, готовить и анализировать данные, которые собирают компании. Вы сможете построить и проверить гипотезы, предсказать события, которые определят развитие бизнеса и помогут ему увеличить прибыль.

Освоив язык программирования Python, среду для интерактивных вычислений Jupyter Notebook, SQL‑запросы к базам данных и современные технологии оперирования большими данными, вы соберёте эффектное портфолио из реальных кейсов. С ним вам будет проще найти первую работу — в офисе или удалённо.

Посмотреть программу курса

Чем работа аналитика данных отличается от data scientist

В простых ситуациях можно обойтись без анализа больших данных и использовать банальную логику. Например, если вы заметили, что покупатели с детьми в магазине часто приобретают определённое печенье, то вы можете просто поставить рядом с ним детский сок и тем самым увеличить продажи.

Но на практике всё обычно куда сложнее. Например, как составить оптимальный пакет услуг мобильного оператора и определить цену, которая будет доступной для абонента и принесёт максимальную выгоду компании?

Аналитик может структурировать и обработать данные о рынке мобильной связи, существующих пакетах и расходах абонентов. Он сформулирует и проверит гипотезы, найдёт закономерности и сделает выводы: предложит конкретный состав пакета и его цену.

Более сложными задачами, а также поиском неочевидных закономерностей в данных занимается уже другой специалист — data scientist. Так, вы можете и не подозревать, что покупки связаны между собой. Или что маршруты автомобилей во вторник и в среду отличаются, поэтому пробки образуются в разных районах — хотя, казалось бы, это обычные будние дни.

Для решения таких задач задействуют машинное обучение и искусственный интеллект. Data scientist выбирает конкретные методы, которые позволяют системе учиться на разрозненных данных, делать логичные выводы и прогнозы.

Какие знания и навыки нужны аналитику данных

Прежде всего, технические (hard skills):

  • Основы математической статистики. За многими методами анализа стоят статистические законы. Для правильных выводов недостаточно одних данных, нужно пользоваться статистикой: отсекать выбросы, правильно считать среднее значение или медиану, проверять статистические гипотезы.
  • Умение создавать программы для анализа данных. Чаще всего в этой области используют язык программирования Python. У него простой и логичный синтаксис, есть немало готовых библиотек — чтобы не изобретать велосипед, а собрать программу из уже существующих функций и блоков.
  • Понимание принципов работы реляционных (табличных) баз данных. Массивы информации чаще всего хранятся в них. Чтобы получить сведения из таких источников, нужно знать язык SQL и уметь составлять на нём запросы к базам данных.

Но и человеческие качества (soft skills) имеют значение. Они определяют, насколько вы эффективны в качестве аналитика данных и комфортно ли вам будет работать на такой должности. Пригодятся:

  • Желание найти корни проблем. Если вы действительно хотите разобраться в причинах событий и явлений, учиться и работать будет легче и интереснее.
  • Умение нестандартно мыслить. Очень странные гипотезы порой находят подтверждение и помогают компаниям заработать миллионы.
  • Смелость. Вы можете сколько угодно сомневаться в своих идеях, но лучше проверить их на данных, чем отправить «в стол», лишь бы коллеги не посчитали вас странным.
  • Навык задавать правильные вопросы, чтобы получить полезную информацию. Это нарабатывается с опытом.

Курс «Профессия аналитик данных» от «Яндекс.Практикума» — возможность освоить востребованную специальность с нуля. Попробуйте бесплатные вводные уроки. Они помогут понять, насколько вам интересен анализ данных, разобраться в профессии на практике и попробовать онлайн‑формат обучения.

Пройти бесплатный пробный курс

С какими сложностями сталкиваются студенты на курсе по анализу данных

Аналитик данных — не самая простая профессия. Чтобы стать хорошим специалистам, придётся приложить немало усилий. К чему стоит быть готовым?

  • Придётся регулярно выделять время на учёбу. Освоить весь материал в сжатые сроки физически невозможно: здесь надо много читать, запоминать, создавать предсказательные модели, писать код, проводить эксперименты и улучшать их результаты.
  • Вы будете постоянно задавать вопросы, и, чтобы получить нужный ответ и не тратить время впустую, необходимо научиться правильно их формулировать.
  • Часть информации предстоит искать самостоятельно. Конечно, в интернете есть всё, а ИТ‑сообщество достаточно отзывчиво, но с нестандартными запросами придётся повозиться.
  • Порой эксперименты с данными завершаются неудачей: ваша модель не подходит для решения задачи, вы получаете совсем не те результаты, которые ожидали. Это нормально: даже опытные аналитики не всегда достигают цели с первого раза. И это вовсе не повод останавливаться.
  • Некоторые темы покажутся совершенно непонятными. Вы можете читать материал снова и снова, но не приблизитесь к сути вопроса. В таких ситуациях помогает переключиться, а позднее вернуться к занятиям — либо попросить помощи у ментора или у других студентов.
Читайте также  Что такое Бсо для ИП?

Как освоить профессию аналитика данных

Обычно в университетах студенты получают фундаментальные знания, но работодателей интересуют навыки решения практических задач и опыт в нужной области. И если крупные учебные заведения регулярно обновляют программу, рассматривают реальные кейсы и современные инструменты для анализа данных, то вузам поменьше для этого часто не хватает ресурсов. Поэтому студентам приходится самостоятельно искать проекты и задачи, чтобы научиться применять теорию на практике.

Быстрое погружение в профессию и понимание потребностей работодателей даёт почувствовать, какие знания и умения нужны. Формируется привычка самостоятельного поиска решений, примеров, похожих кейсов, нарабатывается опыт, растёт портфолио.

Проверьте, готовы ли вы освоить профессию аналитика данных:

  1. Пройдите вводный курс — поймёте, насколько вам интересен анализ данных.
  2. Прочитайте отзывы людей, которые уже завершили занятия на курсе по этой профессии и трудоустроились.
  3. Изучите программу обучения и задайте вопросы образовательной поддержке курса.
  4. Найдите вакансии в своём городе или предложения удалённой работы, изучите требования к специалистам по анализу данным.
  5. Взвесьте все за и против. Было ли интересно анализировать данные на вводном курсе? А вакансии кажутся привлекательными? Если всё так, похоже, вам подходит эта профессия.

Учёба на курсе «Профессия аналитик данных» от «Яндекс.Практикума» похожа на работу в крупной IT‑компании. Студенты анализируют реальные данные, очищают их от ошибок, обсуждают с заказчиком детали заданий, а с наставником — варианты решений. Будущие аналитики не работают с абстрактными кейсами, а составляют рекомендации для актуальных задач бизнес‑практики. Программа прокачает необходимые hard и soft skills. Все эти навыки оттачиваются в течение 6 месяцев.

В конце курса студенты защищают выпускной проект и ищут работу. В этом помогают HR‑специалисты из «Яндекс.Практикума». Работа над резюме и портфолио, подготовка к собеседованию — всё это входит в учебный курс. Впрочем, некоторым студентам удаётся трудоустроиться ещё до получения диплома.

Записаться на курс

Источник: https://Lifehacker.ru/professiya-analitik-dannyx/

Чем занимаются аналитики данных и как начать работать в этой области? — Академия Яндекса

Что делает Data Analyst?

Данные собирают все — от магазинов и ресторанов до компаний-монополистов и приложений с миллионной аудиторией. Аналитик данных помогает сделать так, чтобы собранная информация приносила пользу бизнесу. Мы выяснили, какие задачи вместе с экспертами решает такой специалист и почему ему нужно разбираться в бизнес-процессах не хуже владельца компании.

Задачи аналитика данных

Хороший аналитик данных — не просто математик с навыками программиста. Он понимает бизнес-процессы и хорошо знает продукт. Такой специалист разбирается, на чем зарабатывает конкретный бизнес. В результате его работы компания может получать больше прибыли и делать своих пользователей счастливее. Сильный аналитик данных прежде чем взяться за работу всегда спрашивает руководителя о том, какую задачу хочет решить бизнес.

Кроме программных инструментов аналитику данных важно развивать — метапрофессиональные умения, которые помогают делать работу лучше. Это способность налаживать общение с коллегами и партнерами, умение решать проблемы и выходить из конфликтных ситуаций с наименьшими потерями, сильный эмоциональный интеллект. Такие навыки больше связаны с личностью человека, чем с его профессиональным уровнем. Но их тоже можно формировать и развивать.

«Важно не путать дата-саентиста и дата-аналитика. Первый — это программист, знающий определенный набор языков и алгоритмов. Он решает поставленную техническую задачу. А дата-аналитик ставит эту задачу и переводит результат на язык бизнеса. Для этого нужно развивать гибкие навыки: работа с требованиями, визуализация данных, переговоры. То есть понимать самому и уметь объяснить, что дает бизнесу ваша аналитика. Изучить программы недостаточно — нужно критически подходить к задаче», — говорит Алексей Колоколов, эксперт по BI и визуализации данных.

Для каждого бизнеса задачи будут свои, а порядок действий общий. Аналитик данных работает так:

  • собирает данные (формирует запрос сам или получает задачу от менеджеров);
  • знакомится с параметрами набора (какие типы данных собраны, как их можно отсортировать);
  • проводит предварительную обработку (очищает от ошибок и повторов, упорядочивает);
  • интерпретирует (анализирует, собственно решает задачу);
  • делает вывод;
  • визуализирует (так, чтобы на основе вывода можно было принять решение, подтвердить или опровергнуть гипотезу).

Типичные задачи, с которыми приходят к дата-аналитику:

  • Получить выгрузку данных для определенных целей
    Бухгалтерии нужен список сотрудников, у которых в семье пятеро детей, — специалист делает выгрузку из базы данных.
  • Ответить на вопрос бизнеса
    Сделать расчет определенной метрики: сколько сотрудников уволилось до конца испытательного срока в этом году и сколько в предыдущем. Если компания вводит новую систему адаптации, то изменения такой метрики покажут результат. 
  • Провести А/B-тестирование
    Нужно выяснить, как пользователи реагируют на то, какого цвета кнопка, зеленого или красного. Аналитик тестирует два прототипа. Часть пользователей видят прототип с зеленой кнопкой, другие — с красной. Он смотрит, как реагировали пользователи, проверяет, было ли различие статистически значимо. В итоге — рекомендует решение, которое проверил в ходе теста: внедрить зеленую или красную кнопку.
  • Провести исследования
    Конкретного вопроса от бизнеса нет, но нужен ресерч: взять внешние или внутренние данные, исследовать, найти аномалии или инсайты, провести пиар-исследование.
  • Просчитать, какой вариант выгоднее
    Юнит-экономика: расчет РОИ, инвестиционного потенциала. Оценить окупаемость рекламной кампании или скорректировать бизнес-модель.
  • Выяснить, какой товар и в какое время больше покупают
    Взять группу товаров и посмотреть, есть ли сезонные всплески интереса, сравнить с другими группами.

Статистика позволяет сделать общие выводы по конкретному вопросу. А аналитика данных — исследовать тему со всех сторон, сравнить решения, найти аномалии или инсайты, сопоставить события по множеству параметров. Это открывает новые возможности для бизнеса.

Дата-аналитик может исследовать внутренние данные компании или обратиться к внешним источникам. Анализ открытых данных позволяет отслеживать важные социальные и культурные тренды.

«Дата-аналитик может глубже исследовать проблему. Например, в наших данных по ДТП в России есть доля водителей, которые нарушили правила ОСАГО. Зная эту долю и то, как она менялась в разные годы, мы можем делать выводы о социально-экономической ситуации в регионе — видим тенденцию, когда водители перестают покупать полисы, потому что у них нет денег.

Из того же датасета мы вытаскивали информацию про скрывшихся водителей. Оказалось, что в Омской области 20% водителей покидают место ДТП. Получив эту информацию, мы можем задавать дополнительные вопросы: почему так происходит, что это за социальные и культурные процессы», — рассказывает Сергей Устинов, аналитик данных и проджект-менеджер.

Как начать строить карьеру

Стереотипы в сфере аналитики данных не работают — неважно, гуманитарное или техническое образование получил дата-аналитик.

«У меня нет технического образования, я учился на факультете госуправления. А Python изучал на курсе биоинформатики для биологов. На мой взгляд, этот язык больше всего подходит для старта, база навыков работы с ним приобретается за два-три месяца. Затем стоит изучать профильные библиотеки для сбора и анализа данных. Чем больше ты знаешь библиотек, тем более качественная аналитика тебе доступна», — говорит Сергей Устинов.

Компании не рассчитывают, что начинающий аналитик данных будет уметь сразу всё. Они готовы обучать и направлять молодого специалиста. Главное — интерес к решению бизнес-задач. Правильно сформулированный перед исследованием вопрос важнее, чем большой опыт работы с программными инструментами.

«Программирование и математику можно выучить. А софтскиллы — нарабатываются опытом и практикой. Поэтому дата-аналитику полезны хакатоны и чемпионаты с решением практических задач. Он увереннее чувствует себя, прокачивая стиль мышления, ориентированный на решение конкретных бизнес-задач», — говорит Анна Чувилина.

Начинающих специалистов в сфере ИТ охотнее всего берут на позиции, связанные с анализом данных: доля вакансий для кандидатов с опытом работы меньше года здесь на четверть выше, чем в целом по рынку.

Работодатели ждут, что начинающий специалист:

  • знает хотя бы один язык программирования: Python или R;
  • умеет писать запросы к базам данных SQL;
  • может показать выводы и метрики в виде понятного дашборда (Tableau, Power BI, Amplitude);
  • хочет разбираться в бизнес-процессах, мыслит в терминах бизнес-задач.

Аналитику данных нужно понимать, что такое статистика и гипотеза. Серьезная математика не пригодится, главное ориентироваться в понятиях. В зависимости от запроса компании могут понадобиться навыки работы с Яндекс.Метрикой или Google Analytics. Опытные программисты с сильной математикой, которые не готовы думать в терминах задач бизнеса, закрывают себе путь в профессию аналитика данных. 

«Джуниор вырастает в крутого специалиста, решая реальные кейсы. Потому что насмотренность определяет твой уровень: важно, сколько раз жизнь ставила тебя в ситуацию, когда нужно принимать решение. Развиваться в том, как владеешь инструментами, тоже важно. Но и решение реальных задач помогает аналитику данных расти», — говорит Анна Чувилина.

Источник: https://academy.yandex.ru/posts/chem-zanimayutsya-analitiki-dannykh-i-kak-nachat-rabotat-v-etoy-oblasti