Как определить среднее значение показателя?

Содержание

Как найти Среднее Арифметическое чисел?

Как определить среднее значение показателя?

Среднее арифметическое нескольких чисел — это сумма этих чисел, которую разделили на количество слагаемых. Вот так:

Например, найдем среднее арифметическое чисел 5, 6 и 7. Обозначим среднее значение латинской буквой «m» и посчитаем сумму этих чисел.

Разделим результат на количество чисел в задании, то есть на три.

Так получилась формула среднего арифметического:

Способы вычисления среднего арифметического

Стандартная формула. Чтобы найти среднее арифметическое, нужно сложить все числа и поделить эту сумму на их количество. Формула выглядит так:

где

  • x — среднее арифметическое;
  • xⁿ — конкретное значение;
  • n — количество значений.

Преимущества:

  • подходит при нормальном распределении значений в выборке;
  • легко считать;
  • интуитивно доступно.

Недостатки:

  • сложно представить распределение значений;
  • можно запутаться в разных величинах.

Вычисление моды или наиболее часто встречающегося значения. Формула такая:

где

  • M₀ — мода;
  • x₀ — нижняя граница интервала, который содержит моду;
  • n — величина интервала;
  • fm — частота (сколько раз в ряду встречается то или иное значение);
  • fm-1 — частота интервала предшествующего модальному;
  • fm+1 — частота интервала следующего за модальным.

Преимущества:

  • подходит для формирования общественного мнения;
  • подходит для нечисловых данных;
  • доступно для понимания.

Недостатки:

  • моды может не быть при отсутствии повторов;
  • мод может быть несколько (многомодальное распределение).

Не обязательно быть одаренным ребенком, чтобы хватать пятерки по математике. Нейробиологи говорят, что разница только в том, с какой скоростью дети учатся: обычный ребенок может выучить все то же самое, что и одаренный, только ему потребуется больше времени и усилий.

В современной школе Skysmart верят, что математика — для всех, просто каждому нужен свой подход. Запишите ребенка на бесплатный пробный урок, чтобы начать заниматься в своем темпе, с внимательным личным учителем и в удовольствие.

Вычисление медианы, то есть значения, которое делит упорядоченную выборку на две половины и находится между ними. Если такого значения нет, за медиану принимают среднее число между границами половин выборки. Формула выглядит так:

где

  • Mₑ — медиана;
  • x₀ — нижняя граница интервала, который содержит медиану;
  • h — величина интервала;
  • f i — частота (сколько раз в ряду встречается то или иное значение);
  • Sm-1 — сумма частот интервалов предшествующих медианному;
  • fm — число значений в медианном интервале (его частота).

Преимущества:

  • дает самую реалистичную оценку;
  • устойчива к выбросам.

Недостатки:

  • сложнее вычислить из-за необходимости упорядочивать.

Применить эти знания можно в любой сфере жизни, где нужно обобщить и дать среднюю оценку: в магазине, на работе, в диалоге с другом или во время презентации перед инвесторами. Еще пригодятся, чтобы рассчитать среднюю скорость движения.

Средняя скорость движения — это весь пройденный путь, поделенный на время движения. Формула:

Так мы рассмотрели самые основные методы нахождения среднего значения. Теперь осталось попрактиковаться на примерах, чтобы быстро решать задачки на контрольной.

Примеры расчета среднего арифметического

Пример 1. Вычислить среднее арифметическое 33,3 и 55,5.

Как решаем:

Чтобы найти среднее арифметическое двух чисел, надо сложить эти числа и результат разделить на 2: (33,3 + 55,5) : 2 = 88,8 : 2 = 44,4.

Пример 2. Посчитать среднее арифметическое 7,5 и 8 и 0,5.

Как решаем:

Чтобы найти среднее арифметическое трех чисел, надо сложить эти числа и результат разделить на 3: (7,5 + 8 + 0,5) : 3 = 16 : 3 = 5,33.

Пример 3. Найти среднее арифметическое 202, 105, 67 и 9.

Как решаем:

Чтобы найти среднее арифметическое трех чисел, надо сложить эти числа и результат разделить на 4: (202 + 105 + 67 + 9) : 4 = 383 : 4 = 95,75.

Пример 4. Сколько в среднем тратит школьник денег в неделю, если в понедельник он потратил 80 рублей, во вторник 75 рублей, в среду и четверг по 100 рублей, в пятницу 50 рублей.

Как решаем:

Чтобы найти сколько в среднем школьник потратил за пять дней, надо сложить эти суммы и результат разделить на 5: (80 + 75 + 100 + 100 + 50) : 5 = 405 : 5 = 81.

Ответ: школьник в неделю тратит в среднем 81 рубль.

В 5 классе можно искать среднее арифметическое с помощью онлайн-калькулятора. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

Источник: https://skysmart.ru/articles/mathematic/kak-najti-srednee-arifmeticheskoe

Как посчитать среднее значение в Excel: формула, функции, инструменты

Как определить среднее значение показателя?

Во время работы с числовыми данными в Эксель нередко перед пользователями встает такая задача, как подсчет среднего значения. Математически данное действие выполняется путем деления суммы всех чисел на их количество. А как это сделать в Excel? Давайте разбираться.

Информация в строке состояния

“Как найти обратную матрицу в Excel”

Пожалуй, это самый легкий и быстрый способ определения среднего значения. Для этого достаточно выделить диапазон, содержащий от двух ячеек и более, и среднее значение по ним сразу же отобразится в строке состояния программы.

Если данная информация недоступна, скорее всего, соответствующий пункт выключен в настройках. Чтобы обратно его включить, щелкаем правой кнопкой мыши по строке состояния, в открывшемся списке проверяем наличие флажка напротив строки “Среднее”. Поставить его в случае необходимости можно простым щелчком левой кнопки мыши.

Расчет среднего значения

Когда среднее значение нужно не только определить, но и зафиксировать в отдельной выбранной для этого ячейке, можно использовать несколько методов. Ниже мы подробно рассмотрим каждый из них.

Использование арифметического выражения

Как мы знаем, среднее значение равняется сумме чисел, разделенных на их количество. Данную формулу можно использовать и в Экселе.

  1. Встаем в нужную ячейку, ставим знак “равно” и пишем арифметическое выражение по следующем принципу:
    =(Число1+Число2+Число3…)/Количество_слагаемых.
    Примечание: в качестве числа может быть указано как конкретное числовое значение, так и ссылка на ячейку. В нашем случае, давайте попробуем посчитать среднее значение чисел в ячейках B2,C2,D2 и E2.
    Конечный вид формулы следующий: =(B2+E2+D2+E2)/4.
  2. Когда все готово, жмем Enter, чтобы получить результат.

Данный метод, безусловно хорош, но удобство его использования существенно ограничено объемом обрабатываемых данных, ведь на перечисление всех чисел или координат ячеек в большом массиве уйдет немало времени, к тому же, в этом случае не исключена вероятность допущения ошибки.

Данный метод основан на использовании специального инструмента на ленте программы. Вот как это работает:

  1. Выделяем диапазон ячеек с числовыми данными, для которых мы хотим определить среднее значение.
  2. Переходим во вкладку “” (если находимся не в ней). В разделе инструментов “Редактирование” находим значок “Автосумма” и щелкаем по небольшой стрелке вниз рядом с ним. В раскрывшемся перечне кликаем по варианту “Среднее”.
  3. Сразу же под выделенным диапазоном отобразится результат, который и является средним значением по всем отмеченным ячейкам.
  4. Если мы перейдем в ячейку с результатом, то в строке формул увидим, какая функция была использована программой для расчетов – это оператор СРЗНАЧ, аргументами которого является выделенный нами диапазон ячеек.

Примечание: Если вместо вертикального выделения (столбца целиком или его части) будет выполнено горизонтальное выделение, то результат отобразится не под областью выделения, а справа от нее.

Данный метод, достаточно прост и позволяет быстро получить нужный результат. Однако помимо очевидных плюсов, есть у него и минус. Дело в том, что он позволяет вычислить усредненное значение только по ячейкам, расположенными подряд, причем, только в одном столбце или строке.

Читайте также  Как кофе влияет на кишечник?

Чтобы было нагляднее, разберем следующую ситуацию. Допустим, у нас есть две заполненные данными строки. Мы хотим получить среднее значение сразу по двум строкам, следовательно, выделяем их и применяем рассмотренный инструмент.

В результате, мы получим средние значения под каждым столбцом, что тоже неплохо, если преследовалась именно такая цель.

Но если, все же, требуется определить среднее значение по нескольким строкам/столбцам или разбросанным в разных местах таблицы ячейкам, пригодятся методы, описанные далее.

Альтернативный способ использования “Среднее” на ленте:

  1. Переходим в первую же свободную ячейку после столбца или строки (в зависимости от структуры данных) и жмем кнопку расчета среднего значения.
  2. Вместо моментального вывода результата на этот раз программа предложит нам предварительно проверить диапазон ячеек, по которому будет считаться среднее значение, и в случае необходимости скорректировать его координаты.
  3. По готовности жмем клавишу Enter и получаем результат в заданной ячейке.

Использование функции СРЗНАЧ

С данной функцией мы уже успели познакомиться, когда перешли в ячейку с результатом расчета среднего значения. Теперь давайте научимся полноценно ею пользоваться.

  1. Встаем в ячейку, куда планируем выводить результат. Кликаем по значку “Вставить функци” (fx) слева от строки формул.
  2. В открывшемся окне Мастера функций выбираем категорию “Статистические”, в предлагаемом перечне кликаем по строке “СРЗНАЧ”, после чего нажимаем OK.
  3.  На экране отобразится окно с аргументами функции (их максимальное количество – 255). Указываем в качестве значения аргумента “Число1” координаты нужного диапазона. Сделать это можно вручную, напечатав с клавиатуры адреса ячеек. Либо можно сначала кликнуть внутри поля для ввода информации и затем с помощью зажатой левой кнопки мыши выделить требуемый диапазон в таблице. При необходимости (если нужно отметить ячейки и диапазоны ячеек в другом месте таблицы) переходим к заполнению аргумента “Число2” и т.д. По готовности щелкаем OK.
  4. Получаем результат в выбранной ячейке.
  5. Среднее значение не всегда может быть “красивым” за счет большого количества знаков после запятой. Если нам такая детализация не нужна, ее всегда можно настроить. Для этого правой кнопкой мыши щелкаем по результирующей ячейке. В открывшемся контекстном меню выбираем пункт “Формат ячеек”.
  6. Находясь во вкладке “Число” выбираем формат “Числовой” и с правой стороны окна указываем количество десятичных знаков после запятой. В большинстве случаев, двух цифр более, чем достаточно. Также при работе с большими числами можно поставить галочку “Разделитель групп разрядов”. После внесение изменений жмем кнопку OK.
  7. Все готово. Теперь результат выглядит намного привлекательнее.

Инструменты во вкладке “Формулы”

В программе Excel есть специальная вкладка, отвечающая за работу с формулами. В случае с расчетом среднего значения, она тоже может пригодиться.

  1. Встаем в ячейку, в которой планируем выполнить расчеты. Переключаемся во вкладку “Формулы”. В разделе инструментов “Библиотека функций” щелкаем по значку “Другие функции”, в раскрывшемся перечне выбираем группу “Статистические”, затем – “СРЗНАЧ”.
  2. Откроется уже знакомое окно аргументов выбранной функци. Заполняем данные и жмем кнопку OK.

Ввод функции в ячейку вручную

Как и все остальные функции, формулу СРЗНАЧ с нужными аргументами можно сразу же прописать в нужной ячейке.

В общем, синтаксис функции СРЗНАЧ выглядит так:

=СРЗНАЧ(число1;число2;…)

В качестве аргументов могут выступать как ссылки на отельные ячейки (диапазоны ячеек), так и конкретные числовые значения.

=СРЗНАЧ(3;5;22;31;75)

Просто встаем в нужную ячейку и, поставив знак “равно”, пишем формулу, перечислив аргументы через символ “точка с запятой”. Вот, как это выглядит со ссылками на ячейки в нашем случае. Допустим, мы решили включить в подсчет всю первую строку и только три значения из второй:

=СРЗНАЧ(B2;C2;D2;E2;F2;G2;H2;B3;C3;D3)

Когда формула полностью готова, нажимаем клавишу Enter и получаем готовый результат.

Безусловно, такой метод нельзя назвать удобным, но иногда, при небольшом объеме данных, и он вполне может использоваться.

Определение среднего значения по условию

“Подбор параметра в Excel: где находится, как сделать “

Помимо перечисленных выше методов, в Эксель также предусмотрена возможность расчета среднего значения по заданному пользователем условию. Как следует из описания, участвовать в общем подсчете будут только числа (ячейки с числовыми данными), соответствующие какому-то конкретному условию.

Допустим, нам нужно посчитать среднее значение только по положительным числам, т.е. тем, которые больше нуля. В этом случае, нас выручит функция СРЗНАЧЕСЛИ.

  1. Встаем в результирующую ячейку и жмем кнопку “Вставить функцию” (fx) слева от строки формул.
  2. В Мастере функций выбираем категорию “Статистические”, кликаем по оператору “СРЗНАЧЕСЛИ” и жмем ОК.
  3. Откроются аргументы функции, после заполнения которых кликаем OK:
    • в значении аргумента “Диапазон” указываем (вручную или выделив с помощью левой кнопки мыши в самой таблице) требуемую область ячеек;
    • в значении аргумента “Условие”, соответственно, задаем наше условие попадания ячеек из отмеченного диапазона в общий расчет. В нашем случае, это выражение “>0”. Вместо конкретного числа, в случае необходимости, в условии можно указать адрес ячейки, содержащей числовое значение.
    • поле аргумента “Диапазон_усреднения” можно оставить пустим, так как его обязательное заполнение требуется только при работе с текстовыми данными.
  4. Среднее значение с учетом заданного нами условия отбора ячеек отобразилось в выдранной ячейке.

Заключение

Таким образом, в Экселе существует немало способов для нахождения среднего значения как по отдельным строкам и столбцам, так и по целым диапазонам ячеек, которые, к тому же, могут быть разбросаны по таблице. А использование того или иного метода определяется удобством и целесообразностью его использования в каждом конкретном случае.

Источник: https://MicroExcel.ru/srednee-znachenie/

Формула среднего арифметического значения в Excel — функции и примеры

Как определить среднее значение показателя?

В статье показано, как определить среднее значение в Excel для разных типов данных с помощью формул СРЗНАЧ или СРЗНАЧА. Вы также узнаете, как использовать функции СРЗНАЧЕСЛИ и СРЗНАЧЕСЛИМН для усреднения ячеек, соответствующих определенным критериям.

Средняя зарплата… Средняя продолжительность жизни… Ежедневно мы с вами слышим эти словосочетания, служащие для описания множества одним единственным числом. Но, как ни странно, «среднее значение» — достаточно коварное понятие, часто вводящее в заблуждение обычного, неискушенного в математической статистике, человека. Например, в какой-то абстрактной компании работает десять сотрудников. Девять из них получают зарплату около 50 000 рублей, а один 1 500 000 рублей (по странному совпадению он же является генеральным директором этой компании).

В математике среднее называется средним арифметическим, и оно рассчитывается путем сложения группы чисел, а затем деления на количество этих чисел.

В приведенном выше примере средняя зарплата составляет: 195 000 рублей =(50000*9+1500000)/10. Вряд ли эта цифра соответствует реальной ситуации, но таковы расчёты среднего арифметического значения.

И всё же в большинстве случаев знать среднее весьма полезно.

Как посчитать среднее арифметическое в Экселе? Вам не нужно писать сложные математические выражения. Есть несколько функций «на все случаи жизни».

  • СРЗНАЧ (AVERAGE- а английском варианте) — рассчитать среднее арифметическое ячеек с числами.
  • СРЗНАЧА (или AVERAGEA) — найти среднее арифметическое ячеек с любыми данными (числа, логические и текстовые значения).
  • СРЗНАЧЕСЛИ (или AVERAGEIF) – среднее по заданному критерию.
  • СРЗНАЧЕСЛИМН (или AVERAGEIFS) – среднее ячеек, удовлетворяющих нескольким условиям.

Функция СРЗНАЧ

СРЗНАЧ применяется для возврата среднего арифметического указанных ячеек.

СРЗНАЧ число 1; [число 2];…)

Число 1, 2 и так далее — числа, для которых вы хотите найти среднее. Первый аргумент обязателен, последующие — нет. В одну формулу может быть включено до 255 аргументов. Они могут быть представлены в виде чисел, ссылок на ячейки или диапазонов.

Использование функции СРЗНАЧ – на примерах

СРЗНАЧ — одна из самых простых и простых в использовании функций Excel, и следующие примеры подтверждают это.

Пример 1. Расчет среднего из нескольких чисел

Вы можете указать числа непосредственно. Например,

 =СРЗНАЧ(1;2;3;4) возвращает результат 2,5.

Чтобы вычислить среднее по столбцу, укажите ссылку на него целиком:
=СРЗНАЧ(A:A)

Чтобы получить  по строке, введите ссылку на нее:
=СРЗНАЧ(1:1)

Чтобы вычислить в каком-то диапазоне, укажите его:
=СРЗНАЧ(A1:C20)

Чтобы вернуть среднее из несмежных ячеек, запишите каждую ячейку отдельно, например
=СРЗНАЧ(A1; C1; D1)

И, естественно, ничто не мешает вам включать числа, ссылки и диапазоны в одну формулу. Например, следующее выражение вычисляет среднее из 2 диапазонов и 1 отдельного значения:

=СРЗНАЧ(B3:B5; C7:D9; B11)

Примечание. Если вы хотите округлить полученное число до ближайшего целого, примените одну из функций округления, например:

=ОКРУГЛ(СРЗНАЧ(B3:B5; B7:B9; B11);0)

Помимо чисел, вы можете использовать функцию СРЗНАЧ для вычисления среднего на основе других видов чисел, таких как проценты и время. Это показано в следующих примерах.

Пример 2. Расчет среднего процента

Если у вас есть столбец с процентами на вашем листе, как вы получаете средний процент выполнения? Возьмём обычную формулу Excel для среднего 🙂

Примечание. Обратите внимание, что СРЗНАЧ учитывает и нулевые значения при расчете. А это существенно повлияет на итоговую цифру. Если вы предпочитаете исключать нули из расчета, возьмите вместо этого СРЗНАЧЕСЛИ, как будет показано чуть ниже. ССЫЛКА

Читайте также  Как понять соотношение один к трем?

Пример 3. Расчет среднего времени

Этим совсем не так просто, как с обычными числами. Ведь время включает часы, минуты и секунды? Вычислять разные единицы времени вручную было бы очень сложно… но СРЗНАЧ отлично с этим справляется.

Важные особенности СРЗНАЧ!

Как вы только что видели, применять СРЗНАЧ очень просто. Тем не менее, у нее есть несколько особенностей, о которых вам нужно знать.

  • Нулевые значения (0) включены в расчет.
  • Текстовые строки, логические значения ИСТИНА и ЛОЖЬ, а также пустые ячейки — игнорируются. Если вы хотите включить в расчет логические и текстовые представления чисел, примените  СРЗНАЧА.
  • Учитываются логические значения, которые вы вводите непосредственно в выражение. Например, =СРЗНАЧ(ИСТИНА; ЛОЖЬ) возвращает 0,5, что является средним из 1 и 0.

Примечание. При использовании СРЗНАЧ в листах Excel, учитывайте различие между ячейками, содержащими нулевые значения, и реально пустыми. Нули считаются, а пустые — нет. Это может быть особенно важно, если опция «Показывать ноль в ячейках, которые содержат нулевые значения» не включена на данном листе. То есть, клетки с нулями внешне будут пустыми. Вы можете найти эту опцию в Эксель: Параметры  > Дополнительно > Параметры отображения листа .

Чем отличается функция СРЗНАЧА?

СРЗНАЧА аналогична СРЗНАЧ в том, что она вычисляет среднее арифметическое чисел. Разница в том, что СРЗНАЧА включает в расчет все непустые ячейки, независимо от того, содержат ли они числа, текст, логические ИСТИНА и ЛОЖЬ, или пустые строки, возвращаемые другими формулами.

СРЗНАЧА(значение1; [значение2];…)

значение1, 2,… — это цифры, массивы, ссылки на ячейки или диапазоны, которые вы хотите усреднить. Первый аргумент обязателен, другие (до 255) необязательны.

Она обрабатывает различные типы данных, такие как числа, текстовые строки и логические. Что нужно запомнить:

  • Пустые клетки таблиц игнорируются.
  • Текст, включая пустые строки («»), возвращаемые другими формулами, оценивается как 0.
  • Логическое ИСТИНА оценивается как 1, а ЛОЖЬ оценивается как 0.

Например, =СРЗНАЧА(2;ЛОЖЬ) дает нам 1, что является средним между 2 и 0.

=СРЗНАЧА(2;ИСТИНА) возвращает 1,5, что является средним  от 2 и 1.

На следующем скриншоте показаны два варианта расчёта для среднего значения в Excel, и разные результаты, которые они возвращают:

Поэтому, если вы не хотите включать в свои вычисления логические выражения и текстовые строки, используйте СРЗНАЧ, а не СРЗНАЧА.

Среднее по условию — функция СРЗНАЧЕСЛИ

СРЗНАЧЕСЛИ вычисляет среднее арифметическое всех ячеек, которые соответствуют заданным критериям.

СРЗНАЧЕСЛИ (диапазон; критерии; [диапазон_усреднения])

Она имеет следующие аргументы (первые 2 обязательны, последний – нет):

  • Диапазон — диапазон ячеек, которые будут проверены по заданным параметрам.
  • Критерии — условие, применяемое для определения, какие ячейки усреднять. Они могут быть представлены в виде числа, логического выражения, текста или ссылки, например, 5,> 5, «кот» или A2.
  • Диапазон усреднения — что вы хотите усреднить (он необязательный). Если опущено, функция будет считать по диапазону условия.

А теперь давайте посмотрим, как вы можете применить СРЗНАЧЕСЛИ на реальных рабочих листах, чтобы найти среднее ячеек, соответствующих вашим требованиям.

Точное соответствие критериям

Классическое применение СРЗНАЧЕСЛИ — это нахождение среднего арифметического ячеек, которые точно соответствуют заданному условию. 

В этом примере давайте усредним только продажи (B2: B8) для заказов на бананы (A2: A8):

=СРЗНАЧЕСЛИ($A$2:$A$8; $B$10; $B$2:$B$8)

Вместо того, чтобы вводить условие непосредственно в формулу, вы можете ввести его в отдельную ячейку ($B$10) и затем обратиться к ней. Это очень известный и всеми применяемый приём.

Примечание. Чтобы округлить возвращаемое число до определенного количества десятичных знаков, примените одну из функций округления Excel, или диалоговое окно «Формат ячеек», чтобы изменить только отображение числа на экране.

Например, чтобы округлить полученный выше результат до 2 десятичных знаков, вы можете заключить его в функцию ОКРУГЛ следующим образом:

=ОКРУГЛ(СРЗНАЧЕСЛИ(A2:A8;»бананы»; B2:B8);2)

Кроме того, вы можете выбрать ячейку с формулой (E1 в этом примере), нажмите комбинацию клавиш Ctrl + 1, чтобы открыть диалоговое окно «Формат ячеек». Затем перейдите на вкладку «Числовой» или «Денежный » и выберите количество десятичных разрядов, которые вы хотите показать. Помните, что в этом случае фактическое сохраненное значение не изменится, и точное неокругленное число будет использоваться во всех вычислениях, когда вы ссылаетесь на него в других формулах.

Частичное соответствие критериям (с символами подстановки)

Вы можете применить символы подстановки в аргументе критерия для выбора ячеек на основе частичного совпадения:

  • Вставьте знак вопроса (?), чтобы заменить любой отдельный символ.
  • Вставьте звездочку (*), чтобы заменить ею любую последовательность символов.
  • Чтобы найти реальный знак вопроса или звездочку, введите тильду (~) перед этим символом (то есть, ~? или ~*).

Предположим, что у вас есть 3 разных вида бананов, и вы хотите найти среднюю величину их продаж:

=СРЗНАЧЕСЛИ($A$2:$A$8; «*бананы»; $B$2:$B$8)

Если вашему ключевому слову может предшествовать и/или последовать какой-либо другой символ, добавьте звездочку * как перед словом, так и после него.

=СРЗНАЧЕСЛИ($A$2:$A$8; «*бананы*»; $B$2:$B$8)

Чтобы найти среднее по всем товарам, за исключением каких-либо бананов, запишите следующую формулу:

=СРЗНАЧЕСЛИ($A$2:$A$8; «*бананы*»; $B$2:$B$8)

Как применить числовые условия и логические операторы

Довольно часто вам может потребоваться усреднить ячейки, в которых количество больше или меньше определенного числа. Например, есть перечень чисел в столбце A, и мы хотим найти среднее из тех из них, которые больше 10.

Правильный подход — заключить логический оператор и число в двойные кавычки. 

Итак, мы получили вот что:

=СРЗНАЧЕСЛИ($A$2:$A$7;»>10″)

Другая весьма распространенная проблема – как найти среднее чисел, которые не равны нулю. Для этого вам понадобится оператор «не равно» в аргументе критерия:

=СРЗНАЧЕСЛИ($A$2:$A$7;»0″)

Как вы, возможно, заметили, мы не задействуем третий аргумент [диапазон усреднения] ни в одном из приведенных выше выражений, поскольку мы хотим считать по начальному диапазону.

Для пустых или непустых ячеек

При выполнении анализа данных в Excel часто может потребоваться найти среднее чисел, которые соответствуют либо пустым, либо непустым областям.

Среднее, если пусто

Чтобы включить пустые ячейки, которые не содержат абсолютно ничего (без формулы, без строки нулевой длины), введите «=» в аргументе.

Например, вычислим среднее ячеек C2: C8, если клетка в столбце B в той же строке абсолютно пуста:

=СРЗНАЧЕСЛИ($B$2:$B$8; «=»; $C$2:$C$8)

Чтобы усреднить значения, соответствующие визуально пустым ячейкам, включая те, которые содержат пустые строки, возвращаемые другими функциями (например, с формулой вроде = «»), запишите «». Например:

=СРЗНАЧЕСЛИ($B$2:$B$8; «»; $C$2:$C$8)

Среднее, если не пустое

Чтобы найти среднее, соответствующее непустым ячейкам, введите «».

Например, так вычисляем среднеарифметическое C2:C8, если соответствующая позиция в столбце B не пуста:

=СРЗНАЧЕСЛИ($B$2:$B$8; «»; $C$2:$C$8)

Использование ссылок и других функций в описании условий

Вместо того, чтобы записывать параметры подсчета непосредственно в формуле, вы можете обратиться к определенной ячейке, в которую можно вводить различные значения, не изменяя саму формулу. Так значительно уменьшается риск случайной ошибки при корректировке.

https://www.youtube.com/watch?v=ZNHPq4W6hRs

Если ссылка является критерием точного соответствия, то просто укажите ее в аргументе:

=СРЗНАЧЕСЛИ($B$2:$B$8;E1; $C$2:$C$8)

Если в качестве условия вы берёте логическое выражение со ссылкой или c другой функцией, нужно заключить логический оператор в «двойные кавычки» и добавить амперсанд (&) для их объединения.

Например, чтобы рассчитать средние продажи (C2: C8), превышающие указанное в E4:

=СРЗНАЧЕСЛИ($C$2:$C$8; «>»&$B$13)

С датами в B2: B8, приведенное ниже возвращает среднюю величину продаж (C2: C8), которые произошли до текущей даты:

=СРЗНАЧЕСЛИ($B$2:$B$8; «»&$C$11)

Как видите, только две ячейки (С3 и С5) удовлетворяют обоим условиям, и поэтому только они и берутся для расчета.

Пример 2. Среднеарифметическое на основе критерия даты

В этом примере давайте посчитаем среднее количество товаров, доставленных до 22 июля 2020 года, статус которых определен (позиция в соответствующем столбце не пустая). С количеством, указанным в столбце D, датами в колонке В (критерий_1) и статусом в С (критерий_2), формула выглядит следующим образом:

=СРЗНАЧЕСЛИМН($D$2:$D$8; $B$2:$B$8; «

Источник: https://mister-office.ru/funktsii-excel/average-averageif.html

Как вычислить среднее арифметическое

Как определить среднее значение показателя?

Среднее арифметическое — статистический показатель, который демонстрирует среднее значение заданного массива данных. Такой показатель рассчитывается как дробь, в числителе которой стоит сумма всех значений массива, а в знаменателе — их количество. Среднее арифметическое — важный коэффициент, который находит применение в бытовых расчетах.

Смысл коэффициента

Среднее арифметическое — элементарный показатель для сравнения данных и подсчета приемлемого значения. К примеру, в разных магазинах продается банка пива конкретного производителя. Но в одном магазине она стоит 67 рублей, в другом — 70 рублей, в третьем — 65 рублей, а в последнем — 62 рубля. Довольно большой разбег цен, поэтому покупателю будет интересна средняя стоимость банки, чтобы при покупке товара он мог сравнить свои расходы. В среднем банка пива по городу имеет цену:

Средняя цена = (67 + 70 + 65 + 62) / 4 = 66 рублей.

Зная среднюю цену, легко определить где выгодно покупать товар, а где придется переплатить.

Среднее арифметические постоянно используется в статистических расчетах в случаях, если анализируется однородный набор данных. В примере выше — это цена банки пива одной марки. Однако мы не можем сравнить цену на пиво разных производителей или цены на пиво и лимонад, так как в этом случае разброс значений будет больше, средняя цена будет смазана и недостоверна, а сам смысл расчетов исказится до карикатурного «средняя температура по больнице». Для расчета разнородных массивов данных используется среднее арифметическое взвешенное, когда каждое значение получает свой весовой коэффициент.

Читайте также  Как рассчитать среднюю доходность?

Подсчет среднего арифметического

Формула для вычислений предельно проста:

P = (a1 + a2 + … an) / n,

где an – значение величины, n – общее количество значений.

Для чего может использоваться данный показатель? Первое и очевидное его применение — это статистика. Практически в каждом статистическом исследовании используется показатель среднего арифметического. Это может быть средний возраст вступления в брак в России, средняя оценка по предмету у школьника или средние траты на продукты в день. Как уже говорилось выше, без учета весов подсчет средних значений может давать странные или абсурдные значения.

К примеру, президент Российской Федерации сделал заявление, что по статистике, средняя зарплата россиянина составляет 27 000 рублей. Для большинства жителей России такой уровень зарплаты показался абсурдным. Не мудрено, если при расчете учитывать размер доходов олигархов, руководителей промышленных предприятий, крупных банкиров с одной стороны и зарплаты учителей, уборщиков и продавцов с другой. Даже средние зарплаты по одной специальности, например, бухгалтера, будут иметь серьезные отличия в Москве, Костроме и Екатеринбурге.

Как считать средние для разнородных данных

В ситуациях с подсчетом заработной платы важно учитывать вес каждого значения. Это означает, что зарплаты олигархов и банкиров получили бы вес, например, 0,00001, а зарплаты продавцов — 0,12. Это цифры с потолка, но они приблизительно иллюстрируют распространенность олигархов и продавцов в российском обществе.

Таким образом, для подсчета среднего средних или среднего значения в разнородном массиве данных, требуется использовать среднее арифметическое взвешенное. Иначе вы получите среднюю зарплату по России на уровне 27 000 рублей. Если же вы хотите узнать свою среднюю оценку по математике или среднее количество забитых шайб выбранного хоккеиста, то вам подойдет калькулятор среднего арифметического.

Наша программа представляет собой простой и удобный калькулятор для расчета среднего арифметического. Для выполнения расчетов вам понадобится ввести только значения параметров.

Расчет средней оценки

Многие учителя используют метод среднего арифметического для определения годовой оценки по предмету. Давайте представим, что ребенок получил следующие четвертные отметки по математике: 3, 3, 5, 4. Какую годовую оценку ему поставит учитель? Воспользуемся калькулятором и посчитаем среднее арифметическое. Для начала выберете соответствующее количество полей и введите значения оценок в появившиеся ячейки:

(3 + 3 + 5 + 4) / 4 = 3,75

Учитель округлит значение в пользу ученика, и школьник получит за год твердую четверку.

Расчет съеденных конфет

Давайте проиллюстрируем некоторую абсурдность среднего арифметического. Представим, что у Маши и Вовы было 10 конфет. Маша съела 8 конфет, а Вова — всего 2. Сколько конфет в среднем съел каждый ребенок? При помощи калькулятора легко вычислить, что в среднем дети съели по 5 конфет, что совершенно не соответствует действительности и здравому смыслу. Этот пример показывает, что показатель среднего арифметического важно считать для осмысленных наборов данных.

Как правильно вычислить среднее значение?

Как определить среднее значение показателя?

Средняя зарплата… Средняя продолжительность жизни… Практически каждый день мы с вами слышим эти словосочетания, используемые для описания множества одним единственным числом. Но как ни странно, «среднее значение» — достаточно коварное понятие, часто вводящее в заблуждение обычного, неискушенного в математической статистике, человека.

В чем проблема?

Под средним значением чаще всего подразумевается среднее арифметическое, которое очень сильно варьируется под воздействием единичных фактов или событий. И вы не получите реального представления о том, как именно распределены значения, которые вы изучаете.

Давайте обратимся к классическому примеру со средней зарплатой.

В какой-то абстрактной компании работает десять сотрудников. Девять из них получают зарплату около 50 000 рублей, а один 1 500 000 рублей (по странному совпадению он же является генеральным директором этой компании).

Средним значением в данном случае будет 195 150 рублей, что согласитесь, неправильно.

Какие способы вычисления среднего бывают?

Первым способом является вычисление уже упомянутого среднего арифметического, являющегося суммой всех значений, деленной на их количество.

Формула:

  • x – среднее арифметическое;
  • xn – конкретное значение;
  • n – количество значений.

Плюсы:

  • Хорошо работает при нормальном распределении значений в выборке;
  • Легко вычислить;
  • Интуитивно понятно.

Минусы:

  • Не дает реального представления о распределении значений;
  • Неустойчивая величина легко поддающаяся выбросам (как в случае с генеральным директором).

Вторым способом является вычисление моды, то есть наиболее часто встречающегося значения.

Формула:

  • M0 – мода;
  • x0 – нижняя граница интервала, который содержит моду;
  • n – величина интервала;
  • fm– частота (сколько раз в ряду встречается то или иное значение);
  • fm-1 – частота интервала предшествующего модальному;
  • fm+1 – частота интервала следующего за модальным.

Плюсы:

  • Прекрасно подходит для получения представления об общественном мнении;
  • Хорошо подходит для нечисловых данных (цвета сезона, хиты продаж, рейтинги);
  • Проста для понимания.

Минусы:

  • Моды может просто не быть (нет повторов);
  • Мод может быть несколько (многомодальное распределение).

Третий способ — это вычисление медианы, то есть значения, которое делит упорядоченную выборку на две половины и находится между ними. А если такого значения нет, то за медиану принимается среднее арифметическое между границами половин выборки.

Формула:

  • Me – медиана;
  • x0 – нижняя граница интервала, который содержит медиану;
  • h – величина интервала;
  • f i – частота (сколько раз в ряду встречается то или иное значение);
  • Sm-1 – сумма частот интервалов предшествующих медианному;
  • fm – число значений в медианном интервале (его частота).

Плюсы:

  • Дает самую реалистичную и репрезентативную оценку;
  • Устойчива к выбросам.

Минусы:

  • Сложнее вычислить, так как перед вычислением выборку нужно упорядочить.

Мы рассмотрели основные методы нахождения среднего значения, называющиеся мерами центральной тенденции (на самом деле их больше, но это наиболее популярные).

А теперь давайте вернемся к нашему примеру и посчитаем все три варианта среднего при помощи специальных функций Excel:

  • СРЗНАЧ(число1;[число2];…) — функция для определения среднего арифметического;
  • МОДА.ОДН(число1;[число2];…) — функция моды (в более старых версиях Excel использовалась МОДА(число1;[число2];…));
  • МЕДИАНА(число1;[число2];…) — функция для поиска медианы.

И вот какие значения у нас получились:

В данном случае мода и медиана гораздо лучше характеризуют среднюю зарплату в компании.

Но что делать, когда в выборке не 10 значений, как в примере, а миллионы? В Excel это не посчитать, а вот в базе данных где хранятся ваши данные, без проблем.

Вычисляем среднее арифметическое на SQL

Тут все достаточно просто, так как в SQL предусмотрена специальная агрегатная функция AVG.

И чтобы ее использовать достаточно написать вот такой запрос:

/* Здесь и далее salary — столбец с зарплатами, а employees — таблица сотрудников в нашей базе данных */ SELECT AVG(salary) AS 'Средняя зарплата' FROM employees

Вычисляем моду на SQL

В SQL нет отдельной функции для нахождения моды, но ее легко и быстро можно написать самостоятельно. Для этого нам необходимо узнать, какая из зарплат чаще всего повторяется и выбрать наиболее популярную.

Напишем запрос:

/* WITH TIES необходимо добавлять к TOP() если множество многомодально, то есть у множества несколько мод */ SELECT TOP(1) WITH TIES salary AS 'Мода зарплаты' FROM employees GROUP BY salary ORDER BY COUNT(*) DESC

Вычисляем медиану на SQL

Как и в случае с модой, в SQL нет встроенной функции для вычисления медианы, зато есть универсальная функция для вычисления процентилей PERCENTILE_CONT.

Выглядит все это так:

/* В данном случае процентиль 0.5 и будет являться медианой */ SELECT TOP(1) PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY salary) OVER() AS 'Медианная зарплата' FROM employees

Подробнее о работе функции PERCENTILE_CONT лучше почитать в справке Microsoft и Google BigQuery.

Какой способ все-таки использовать?

Из сказанного выше следует, что медиана лучший способ для вычисления среднего значения.

Но это не всегда так. Если вы работаете со средним, то остерегайтесь многомодального распределения:

На графике представлено бимодальное распределение с двумя пиками. Такая ситуация может возникнуть, например, при ании на выборах.

В данном случае среднее арифметическое и медиана — это значения, находящиеся где-то посередине и они ничего не скажут о том, что происходит на самом деле и лучше сразу признать, что вы имеете дело с бимодальным распределением, сообщив о двух модах.

А еще лучше разделить выборку на две группы и собрать статистические данные для каждой.

Вывод:

При выборе метода нахождения среднего нужно учитывать наличие выбросов, а также нормальность распределения значений в выборке.

Окончательный выбор меры центральной тенденции всегда лежит на аналитике.

Полезные ссылки:

Источник: https://thisisdata.ru/blog/kak-pravilno-vychislit-sredneye-znacheniye/